Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 394: 130197, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086462

RESUMO

In this study, effective biomaterials were prepared from marine macroalgae, namely Fucus spiralis (F.S), Ulva intestinalis (U.I), and Corallina officinalis (C.O). The ability to adsorb the hazardous organic dye crystal violet (CV) was examined, revealing different adsorptive properties for the three algae. The removal of CV dye occurred onto only a homogeneous monolayer for F.S, and both a homogeneous monolayer and a heterogeneous multilayer for U.I and C.O algae. The predicted monolayer capacities at 25 °C were approximately 53 mg/g, 55 mg/g, and 97 mg/g for F.S, C.O, and U.I, respectively. The adsorption of CV dye on all the algae was found to follow a pseudo-second-order rate. Ulva intestinalis algae, as a potential adsorbent of CV dye, were also tested in the adsorption of inorganic substances and demonstrated significant efficiency in the removal of chromium (VI). The findings highlight various adsorption properties and the relevance of macroalgae for wastewater treatment applications.


Assuntos
Rodófitas , Alga Marinha , Ulva , Poluentes Químicos da Água , Cromo , Violeta Genciana , Adsorção , Poluentes Químicos da Água/química , Cinética , Concentração de Íons de Hidrogênio
2.
Polymers (Basel) ; 15(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139918

RESUMO

The aim of this work is to synthesize and characterize alginate-Moroccan clay bio-composite in order to improve our understanding of the adsorption of inorganic pollutants found in textile effluents. Characterization of the bio-composite used was carried out using a variety of techniques (IR-TF, SEM, DRX, and pHZPC). The influence of the medium's physico-chemical parameters (temperature, pH, initial concentration, etc.) on the retention of inorganic pollutants was also studied. Studies of adsorption and inorganic pollutants such as orthophosphate (H2PO4- and HPO42-) and nitrate (NO3-) ions were carried out, using simple solutions from the laboratory, in a batch system. This study explored the impact of adsorbent dose, contact time, solution pH, and temperature on the adsorption process. Various kinetic models, including pseudo-first-order, pseudo-second-order, intra-particle diffusion, and Elovich models, were tested and evaluated, to illustrate the adsorption kinetics. This study's findings demonstrated that the adsorption process follows second-order kinetics, with associated rate constants successfully determined. The correlation coefficient for the pseudo-second-order kinetic model is nearly equal to 1 (>0.98), and the value of theoretical adsorption capacity (qe,the) is comparable to the experimental one (qe,the = 58.14 mg/g for H2PO4-, qe,the = 54.64 mg/g for HPO42-, and qe,the = 52.63 mg/g for NO3-). Additionally, the adsorption equilibrium was investigated through the application of various mathematical models, including the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherm models, to assess the mechanistic parameters associated with the adsorption process. Among these models, the Langmuir isotherm emerged as the most suitable one for characterizing the adsorption of H2PO4-, HPO42-, and NO3- ions using bio-nanocomposite beads. The maximum adsorbed amounts of metal ions by the bio-nanocomposite used were 625 mg/g for H2PO4-, 909.09 mg/g for HPO42-, and 588.23 mg/g for NO3- from the batch system. The endothermic and physical nature of the adsorption is suggested by the positive values of ΔH°, which is consistent with experimental findings. The adsorption process is spontaneous, as evidenced by the negative ΔG° values. Positive ΔS° values indicate increased randomness at the solid/liquid interface during adsorption of ion-organic ions onto the engineered bio-nanocomposite. The obtained results demonstrated that, from a scientific perspective, alginate-Moroccan clay bio-nanocomposites exhibit a highly significant adsorption capability for the removal of oxyanions in aqueous environments.

3.
Chemosphere ; 341: 140127, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37690565

RESUMO

Treating wastewater containing pollutants with layered double hydroxide (LDH) material attracts excellent interest. LDH materials are known by the memory effect property, which leads to the reconstruction of the LDH structure after its calcination and rehydration. In this study, LDH material was prepared, calcined, and then rehydrated in an aqueous Cr(VI) solution. XRD, FTIR, and SEM-EDS analysis confirm the successful reconstruction of LDH-loading chromium on its surface and layered space. Response surface methodology (RSM) results showed that LDH mass, contact time, and chromium concentration are the main factors controlling the removal of Cr(VI). The heterogeneous sorption of chromium was described by fitting the equilibrium data to the Freundlich model. Analytical techniques, thermodynamic data, activation, and adsorption energies confirm that the removal process of Cr(VI) is endothermic, spontaneous, and physical nature. LDH exhibits good reusability performance with only a 7% reduction of initial adsorption capacity after five cycles of the calcination-rehydration process. These results show that the memory effect of LDH is helpful for the intercalation and the removal of emergent pollutants, especially for wastewater treatment.


Assuntos
Cromo , Poluentes Ambientais , Adsorção , Hidróxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...